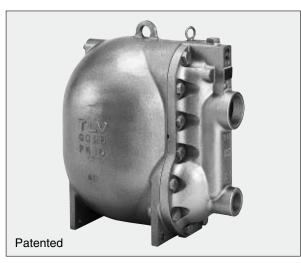
PowerTrap. TLV


MODEL GP14 CAST IRON CAST STEEL

MECHANICAL PUMP FOR CONDENSATE REMOVAL AND RECOVERY

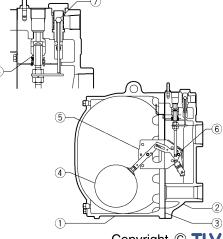
Features

Pump for a wide range of applications. Ideal for condensate removal from vented receivers and sump drainage.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- 5. Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs.
- 6. High-quality stainless steel internals and hardened working surfaces ensure reliability.

Specifications

Model		GP14			
Body Material		Cast Iron	Cast Steel		
Connection	Pumped Medium Inlet & Outlet	Screwed	Screwed	Flanged	
	Motive Medium & Pump Exhaust	Screwed	Screwed	Flanged	
	Pumped Medium Inlet × Outlet	3″× 2″	3″× 2″	DN 50×50, DN 80×50	
Size	Motive Medium Inlet	1″	1″	DN 25	
	Pump Exhaust Outlet	1″	1″	DN 25	
Maximum Operating Pressure (barg) PMO		13	14		
Maximum Operating Temperature (°C) TMO		200			
Motive Medium Pressure Range (barg)		10 - 13	10 - 14		
Maximum Allowable Back Pressure		0.5 bar less than motive medium pressure used, but not to exceed 10.5 barg			
Volume of Each Discharge Cycle (l)		approximately 30			
Motive Mediun	n*	Saturated Steam, Compressed Air, Nitrogen			
Pumped Mediu	um**	Steam Condensate, Water			
Do not use with	toxic, flammable or otherwise hazardous	; fluids.		1 bar = 0.1 MPa	

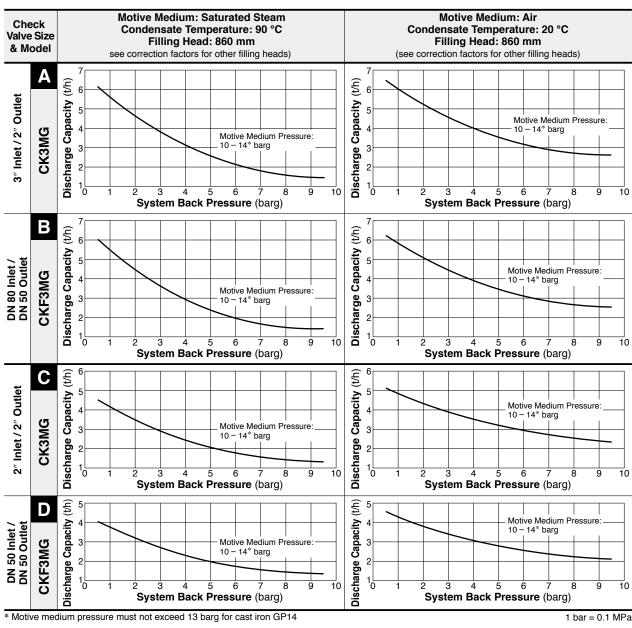

** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids.

PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: 13 (Cast Iron), 16 (Cast Steel) Maximum Allowable Temperature (°C) TMA: 200 (Cast Iron) 220 (Cast Steel) To avoid abnormal operation, accidents or serious injury,

CAUTION

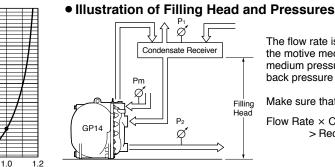
DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted

No.	Descri	ption	Material	DIN*	ASTM / AISI*
	D. d.		Cast Iron FC250	0.6025	A126 CI.B
1	Body		Cast Steel A216 Gr.WCB**	1.0619	—
0	② Cover		Cast Iron FC250	0.6025	A126 CI.B
Ø			Cast Steel A216 Gr.WCB**	1.0619	—
3	Cover Gasket		Graphite/Stainless Steel US316L	-/1.4404	-/AISI316L
4	Float		Stainless Steel SUS316L/303	1.4404/1.4305	AISI316L/303
(5)	Lever Unit		Stainless Steel	—	—
6	Snap-action Unit		Stainless Steel	—	—
	Motive Medium IntakeValve Unit	Intake Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C
\sim		Valve Seat	Cast Stainless Stl. A351 Gr.CF8/ Stainless Steel SUS440C	1.4312/1.4125	- /AISI440C
(8)	Exhaust Valve Unit	Exhaust Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C
۲		Valve Seat	Stainless Steel SUS420F	1.4028	AISI420F
(9)	Check Valve ***	CK3MG	Cast Stainless Steel A351 Gr.CF8	1.4312	—
٢		CKF3MG	Cast Stainless Steel A351 Gr.CF8	1.4312	—


* Equivalent materials ** Option: Cast Stainless Steel

*** Not shown, model depends on GP14 connection; CK3MG for screwed, CKF3MG for flanged

Copyright © TLV


Discharge Capacity

Correction Factors

For filling heads other than 860 mm

(minimum filling head: 710 mm)

The flow rate is determined by the motive medium, motive medium pressure (Pm) and back pressure (P2).

Make sure that:

Flow Rate × Correction Factor > Required Flow Rate

NOTE:

A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities

with the standard GP14 configuration, TLV CK3MG or CKF3MG check valves must be used. • Motive medium pressure minus back pressure must be greater than 0.5 bar.

1500

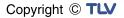
1400

1300 (mm)

1200

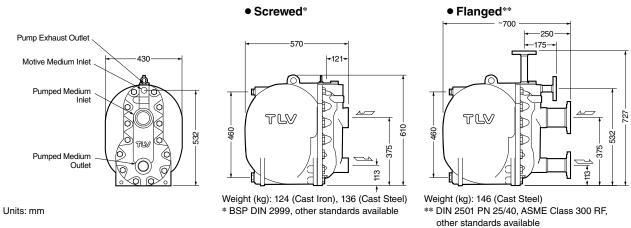
1100

1000


900 860

800 710 ⊑ 0.7

Filling Head


• In closed system applications, the motive medium must be compatible with the liquid being pumped. If a

non-condensable gas such as air or nitrogen is used as the motive medium, consult TLV for assistance. • A strainer must be installed at the motive medium and pumped medium inlets.

TLV

Dimensions

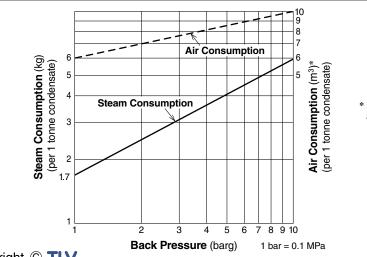
Size of Receiver/Reservoir

The receiver/reservoir must have a capacity sufficient to store the condensate produced during the PowerTrap operation and discharge. A receiver will generally be larger than a reservoir because it must handle the condensate both as a liquid and as flash steam, and separate one from the other so that only condensate is sent to the PowerTrap.

(1) Size of Receiver (flash steam is involved)

Flash steam up to (kg/h)	Receiver diameter (mm)	Vent pipe diameter (mm)		
25	80	25		
50	100	50		
75	125	50		
100	150	80		
150	200	80		
200	200	100		
300	250	125		
400	300	125		
500	350	150		
700	400	200		
800	450	200		
1000	500	200		
1100	500	250		
1400	550	250		
1500	600	250		

③ If flash steam is condensed before it enters the receiver/reservoir, compare tables (1) & (2) and


2 Size of Reservoir (flash steam is not involved)

Amount of condensate	Reservoir diameter (mm) and length (m)						
(kg/h)	40	50	80	100	150	200	250
300 or less	1.2m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

choose the larger of the two resultant sizes.

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P₂) equals 2 or greater (when $Pm \div P_2 \ge 2$)

Steam or Air Consumption (Motive Medium)

* Equivalent consumption of air at 20 °C under atmospheric pressure

Consulting & Engineering Service

Memo:

Manufacturer

http://www.tlv.com

SDS U2404-12 Rev. 9/2012

Products for intended use only. Specifications subject to change without notice.